

Sampling approaches in animal health studies

Al Ain 13-14 November 2017

Definitions

Populations and Samples

From a **statistical** point of view:

✓ Population

is a set of measurements, that may be finite or infinite, really existing or conceptual

✓ Sample

is a sub-set of measurements taken from the population and used to estimate population parameters

Populations and Samples

From an **epidemiological** point of view:

✓ Population

is a set of individuals (or a set of aggregates of individuals) that may be classified according to one or more homogeneous criteria (residence, production attitude, genetic structure, etc.)

✓ Sample

is a sub-set taken from the population and used to gather information on the population itself

Collaborating Centre Veterinary Epidemiology

Populations and samples

Meanings and examples

STATISTIC.	EPIDEMIOL.	EXAMPLES		
Population	Population	Antibody titers		
is a set of mea-	is a set of indi-	against a cer-		
surements	viduals that	tain disease in a		
	may be classi-	cattle herd		
	fied according			
	to homoge-			
	neous criteria			
that may be		Animals in a		
finite,		herd		
infinite,	(it exists only	Italian cattle		
	conceptually)	population		

Populations and samples

Meanings and examples

STATISTIC.	EPIDEMIOL.	EXAMPLES
really existing		The above
• • •		mentioned cat-
		tle
or conceptual		The results of a
		series (poten-
		tially infinite)
		of administra-
		tions of a cer-
		tain drug to
		animals of a de-
		fined species

Meanings and examples

STATISTIC.	EPIDEMIOL.	EXAMPLES		
Sample is a sub-	Sample	•32 randomly se-		
set of measure-	is a sub-set taken	lected animals		
ments taken from	from the popula-	•10 females and		
the population	tion and used to	10 males ran-		
and used to esti-	gather informa-	domly selected		
mate population	tion on the popu-	•Every tenth ani-		
parameters	lation itself	mal (arriving to		
		an abattoir, a		
		custom, etc.)		
		• Reproductive		
		stock (***)		

- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample size
- ✓ Time of sampling

They should be: ✓ Explicit Clearly defined ✓ Actually achievable

UNCORRECT	CORRECT
To know which diseases exist in UAE	To know whether or not «disease X» is present in a camel
To know whether or not	population of UAE at a prevalence
«disease X» is present	rate higher than a predefined
in camels of UAE	threshold

Examples of objectives

)ie

UNCORRECT	CORRECT
To measure the	Considering an acceptable level of
occurrence of «disease	error (standard error), and an
X» in the population of	approximate value of expected
camels of UAE	prevalence, to measure the
To measure the	serological prevalence of «disease
prevalence of «disease	X» in the population of camels of
X» in the population of	UAE
camels of UAE	

Definition of objectives

The definition of objectives in the case of a data collection on sample basis should be more precise than in the case of data collection on the whole population because the planning of qualitative and quantitative aspects of sampling is strictly dependent on chosen objectives

Definition of objectives

Examples

• Sample size is different in the case we need to detect whether a disease is "not present" in a certain population from the case we need to measure the prevalence of that disease in the same population

continue)

Definition of objectives

Health Inspector's Notebook Jim Chan - Story + Art 🗲 Chris Chan - Layout Behind The Kitchen Door Let's go, E. coli! Com'n, Sal! Let's ho OK! Staphylococcus, I love undercooked on the lettuce! you get on the bacon jam. meat! I'll get in the meat with Campylobacter. Salmonella you sneak in the lettuce love salad! with Listeria. Mould, you and your kids get on the bun! Let's infect! Good! I'm loaded with toxins! No, boys It's a mutated This looks lik burger bun! a croissant! No, it's a donut! 2013 chanchris.com

Examples

Target population is different in the case we need to investigate the "risk for the consumer" due to a certain disease/pollutant from the case we need to investigate the "presence of that disease or pollutant" in an animal population

(continue)

Examples

 The sizes of samples collected to estimate the prevalence of a certain disease differ, depending on the expected prevalence of that disease and on the degree of precision requested to the estimate itself

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Phases of sample design

6.625

- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Admission criteria strictly depend on chosen objectives ...i.e....

Admission criteria are the criteria according to which each individual may or may not be included in the sample. They are a direct consequence of the objectives of sampling

Oie Collaborating Centre Veterinary Epidemiology

Objective	Criterion
	This objective needs to be split into
	three sub-objectives:
To estimate the risk for	1. To estimate the average amount
the consumer get	of raw camel milk in the diet
brucellosis drinking	2. To estimate the prevalence of
raw camel milk	brucellosis in camel herds
	3. To estimate the level of Brucella
	concentration in camel milk

Admission criteria

4

14

Collaborating Centre Veterinary Epidemiology	Objecti	ve	Criterion	
	1. To es	timate the	The whole human po country, subdivided	opulation of the by age groups,
Example #1 average		amount of raw	gender and other possible relevant	
	camel n	nilk in the diet	conditions (such as	rural vs urban
			population, etc.)	
Objective		Criterion]
2. To estimate the				
prevalence of		All adult female camels during the		
brucellosis in camel		milking periods	8	
herds				
_				

Objective	Criterion	
3. To estimate the level		
of <i>Brucella</i>	Milk produced in infected bords	
concentration in camel	wink produced in infected herds	
milk		

Collaborating Centre Veterinary Epidemiology

Example #2

Objective	Criterion	
	Two objectives:	
	1. Probability that	
	one or more RVF	
To determine the	infected camels are	
probability that RVF	introduced into EAU	
infection is introduced	in the unit of time	
into EAU through	2. Probability that a	
imported camels	RVF infected camel	
	will be not detected	
	by the import	
	controls	

Admission criteria

Example #2

Objective	Criterion
1. Probability that one or more RVF infected camels are introduced into EAU in the unit of time	All (not vaccinated against RVF) camels imported from RVF infected countries during the vector season

Admission criteria

Example #2

Objective	Criterion
2. Probability that a	All imported RVF
RVF infected camel	infected camels
will be not detected by	subjected to import
the import controls	controls

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Type of sampling

- Simple random sampling
- Systematic random sampling
- Stratified sampling
- ✓ Multistage sampling

Collaborating Centre Veterinary Epidemiology

Systematic random sampling

It is obtained by putting in a urn a set of tags (one for each element of the population) with the ID numbers of each element (e.g. eartag number) and taking from the urn the desired number of tags. It may also be obtained using random number tables or using a computer

eterinary Enidemiology

Systematic random sampling

We need to extract a sample of **n** elements from a population of size **N**:

- a sampling step is defined:
 k=N/n
- the first animal to be sampled is randomly selected between 1 and
- and every kth animal starting from the first selected animal is introduced in the sample

Systematic random sampling

Advantages

- We do not need to know each element of the population, the only needed piece of information is population size
- It is suitable, for example, in quality control or when population units manifest themselves in a time sequence (e.g. in a laboratory, slaughterhouse, custom office, etc.)

Stratified sampling

- Population is subdivided into strata (sub-groups) and a simple or systematic random sample is taken from each stratum
- Characters chosen as strata (age, sex, breed, geographical origin, herd size, etc.) must be relevant for the investigation

Stratified sampling

Advantages

- It allows to perform a sampling that is representative of each stratum in the population, even in the case of very small subgroups
- It allows (in the case of non proportional stratified sampling) to draw also inferences on single strata of the population
- It reduces sampling variance (increase in precision of estimates)

Disadvantages

Effects of stratification features need to be known in advance

Two types of Stratified sampling exist:

- Proportional s.s.
 - Non-proportional s.s.

Stratified sampling

Examples

We need to sample 60 sheep from a population of 7800, subdivided in 4 flocks.

Proportional stratified sampling:

from each flock a sample is taken proportionally to the weight of that flock relative to total population

Stratified sampling

Examples

I flock	3000	60*3000:7800=	23	
II flock	800		6	
III flock	2500		19	
IV flock	1500		12	
TOTAL	7800		60	Y
			X	

Stratified sampling

Examples

We need to sample 60 sheep from a population of 7800, subdivided in 4 flocks.

Non-proportional stratified sampling:

from each flock an equal sample is taken (e.g. to have pre-defined and equal precision of the estimates for each stratum of the population)

I flock	3000	15
II flock	800	15
III flock	2500	15
IV flock	1500	15
TOTAL	7800	60 🗡

Stage 1 - counties Stage 2 - segments Stage 3 - homes Stage 5 - subsamples Stage 4 - sample persons

Multi-stage sampling

It is a combination of the previous methods The sample is selected in two or more phases Example:

- a sample of dairy herds is randomly selected and they
- a sample of heifers is randomly selected in each selected herd

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Phases of sample design

- 6.625
- Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample size
- ✓ Time of sampling

Collaborating Centre Veterinary Epidemiology

Sample size

We need to consider two different types of variables to be studied:

Dichotomous variables

- Presence/absence of a disease
- Presence/absence of residues or pollutants

Sample size

ANTIMICROBIAL DRUGS

Continuous variables

- Intake of mercury through the diet
- Concentration of antimicrobial drugs in food NOTE: in both cases, dichotomization may be performed based on defined thresholds, but it would produce a loss of information

Sample size to detect a disease in a populati					
with a threshold prevalence					
vllaborating Centre eterinary Epidemiology				· /	
POPULATION			×.		
SIZE	0.50%	1.00%	2.00%	5.00%	10.00%
20	20	20	20	19	15
50	50	50	48	34	22
100	100	95	77	44	25
250	227	174	112	52	27
500	349	224	128	55	28
1000	450	258	138	57	28
2000	517	277	143	58	28
10000	580	294	147	58	28
	598	298	148	58	28

Confidence level = 95%

Collaborating Centre Veterinary Epidemiology

SIZE	ION	0.50%	1.00%	2.00%	5.00%	10.00 ^r
	20	20	20	20	20	1
	50	50	50	50	41	2
	100	100	99	90	59	Ċ
	250	244	210	149	75	2
	500	420	300	183	82	2
	1000	601	367	204	86	2
	2000	736	409	215	88	2
	10000	878	448	225	89	2
IN	FINITE	919	458	228	90	4

Confidence level = 99%

Finite populations:

$$n = \left[1 - \left(1 - \alpha\right)^{\frac{1}{D}}\right] * \left[N - \frac{\left(D - 1\right)}{2}\right]$$

D=number of animals infected in the population N=total number of animals in the population α =confidence level

Infinite populations:

$$n = \frac{\log(1-\alpha)}{\log(1-p)}$$

α=confidence level
p=prevalence of infection

Calculation of the sample size

- For infinite populations in may be easily calculated using a spreadsheet like Excel:
- given the threshold prevalence p, for example 1%=0.01
- and the confidence level, for example 95%=0.95
- sample size may be calculated as

=log(1-0.95)/log(1-0.01) and the result is 298

Collaborating Centre

Calculation of the sample size

From: $n = \frac{z\alpha^2 * p * (1-p)}{E^2}$

p=expected prevalence E=accepted level of error za=1.96 for 95% c.l. za=2.575 for 99% c.l.

Calculation of the sample size

For finite populations, calculate the sample size					
using the following formula:					
	n₁=(ni*N)/(ni+N)			
Where:	N f = sample size for finite population				
	N i = sample size for infinite population				
	(from the table)				
	N = size of the total population			X	

Collaborating Centre Veterinary Epidemiology

Calculation of the sample size

Collaborating Centre

Sample size for estimating mean value of a continuous variable

Confidence		Precis	sion of estim	ation	
level	±10%	±20%	±30%	±50%	±100%
95%	384	96	43	15	4
99%	697	174	77	28	7

$$n = \left(\frac{1,96*\sigma}{E}\right)^2$$

Confidence level = 95%

$$n = \left(\frac{2,64*\sigma}{E}\right)^2$$

Confidence level = 99%

E=accepted level of error σ=standard deviation of variable's distribution

Phases of sample design

- 6.625
- ✓ Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Phases of sample design

- 6.625
- Objectives of sampling
- ✓ Target population
 - admission criteria
 - stratification criteria
- ✓ Type of sampling
- ✓ Sample **size**
- ✓ Time of sampling

Time and duration of sampling

They depend on:

- Objective of sampling
- Type of study
 - transversal
 - longitudinal
- Seasonality of the studied phenomenon, which depends on:
 - host biology
 - parasite biology
 - husbandry habits and traditions
 - Logistic constraints

Final remarks

In case of rare events sample surveys are not suitable

Examples of rare events are:

- Exotic diseases or newly introduced ones
- Diseases in final phases of eradication programs, when prevalence approaches zero
- Diseases rare for their own nature (e.g. BSE)^{*}

For this reason, early warning systems cannot be based on random sampling

Final remarks

- In all these cases, clinical ("passive") surveillance is more effective
- Even if "passive" surveillance has a low sensitivity, this low sensitivity is compensated by the large portion of the population that it can check
- Therefore, in case of rare events, the most costeffective way to deal with problems is:
 - Passive surveillance
 - Risk-based surveillance which is a targeted (<u>not random</u>) active surveillance targetting those population strata with higher probability of being exposed and infected

